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Abstract. We study mutual synchronisation in a model of interacting limit cycle oscillators 
with random intrinsic frequencies. It is shown rigorously that the model exhibits no 
long-range order in one dimension, and that in higher-dimensional lattices, large clusters 
of synchronised oscillators necessarily have a sponge-like structure. Surprisingly, the 
phase-locking behaviour of the mean-field model is completely different from that of any 
finite-dimensional lattice, indicating that d =CO is the upper critical dimension for phase 
locking. 

Large populations of interacting non-linear oscillators can spontaneously synchronise 
themselves to a common frequency, even if there is some distribution of natural 
frequencies across the population [ 1,2]. This remarkable collective phenomenon, 
known as self-synchronisation, is important in lasers [3], Josephson junction arrays 
[4-61, oscillating chemical reactions [ 1,2,7], and networks of biological oscillators, 
such as heart pacemaker cells [ 11, swarms of flashing fireflies [8], and groups of women 
whose menstrua1 periods become mutually synchronised [9]. 

There has been a great deal of recent theoretical work on self-synchronisation 
[ 10-201, because it is a model problem for physicists interested in cooperative non-linear 
dynamics in many-body systems with randomness. Several previous analyses [ 10-151 
have relied on mean-field approximations in which the interactions are assumed to 
have infinite range. 

In this letter we present a novel analysis of synchronisation in a model of locally 
interacting oscillators. In this model [16], each oscillator has only one degree of 
freedom, its phase [l,  2, 191. 

The equations of motion are: 

d i  = w i  + K sin (6, - 6,) i =  1 , .  . . , N = L ~ .  (1) 

Here 0; is the phase of the oscillator located at site i in a d-dimensional hypercubic 
lattice, wi  is its intrinsic frequency, K 3 0  is the interaction strength and the sum 
extends over the nearest neighbours of site i. The intrinsic frequencies wi are assumed 
to be randomly distributed across the population of oscillators, with normalised number 
density p ( w ) .  By going into a rotating frame and rescaling ( l ) ,  p ( w )  may be assumed 
to have zero mean and unit variance. The sinusoidal coupling terms tend to align the 
phases of interacting oscillators and are therefore analogous to ferromagnetic interac- 
tions. 
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We outline below (details will be presented elsewhere [18]) a proof that the model 
(1) exhibits no long-range order in one dimension, and that in lattices of higher 
dimensions, clusters of synchronised oscillators necessarily have a sponge-like structure 
reminiscent of Ising [21] and percolation [22] clusters. These analogies to equilibrium 
systems are non-trivial since the lattice studied here is composed of self-sustained 
non-linear oscillators, each of which is itself a dynamical system far from equilibrium. 
An unexpected difference from equilibrium systems is that the lattice and mean-field 
models have completely different phase-locking behaviour, for any lattice dimensional- 
ity, indicating that the ‘upper critical dimension’ is infinite. 

The oscillator lattice ( 1 )  is related to more familiar physical systems, such as the 
X Y  classical spin model and arrays of Josephson junctions. If there were no random- 
ness in the U, ,  ( U ,  = w for all i ) ,  then ( 1 )  actually is the X Y  model at zero temperature, 
if we identify the variable +, = 8, - w t  with the planar spin at site i. This zero- 
temperature model has a perfectly ordered solution +, = constant for all i. In the 
oscillator model ( 1 )  this would represent perfect in-phase synchrony. Disorder may 
be introduced in several ways. In the X Y  model, thermal disorder may be included 
by adding delta-correlated white noise to (1). Then the corresponding Fokker-Planck 
equation gives the correct equilibrium distribution. Alternatively, one may assume 
randomness in the coupling K [20], as in random-spin systems. In the present model 
( l ) ,  it is the w,  that are random. This quenched randomness at each site is motivated 
by the biological interpretation of ( 1 )  as a network of pacemaker neurons or heart 
cells; the random wi represent the cell-to-cell variability of intrinsic firing rate found 
in real populations of spontaneously oscillatory cells [ 11. 

To introduce our results about phase-locking in the oscillator lattice ( l ) ,  consider 
the simple case of N = 2 oscillators. Then ( 1 )  reduces to 

(20) 

(2b) 

d, = U ,  + K sin(@,- e, )  
d2 = w 2  + K sin( 8, - 02). 

Let + = 8,  - Oz. Then 4 = w ,  - w2 - 2K sin +. A phase-locked solution with 4 = 0 can 
exist if and only if 

Iw, - ~ 2 1  S 2K. (3) 

Intuitively, locking occurs whenever the frequency difference is small enough relative 
to the coupling. In this case, there are two phase-locked solutions, one of which is 
approached asymptotically from almost all initial conditions (figure 1). Thus the pair 
of oscillators eventually settles into a phase-locked state if (3) is satisfied. 

Figure 1. If Iw ,  - w 2 /  < ZK, there are two phase-locked solutions. The stable solution (full  
circle) is approached asymptotically from almost all initial conditions. 
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For random ( U , ,  w 2 ) ,  condition (3) may or may not be satisfied and locking may 
or may not occur. The ‘probability of phase locking’ P( K )  is defined by the probability 
that (3) is satisfied, i.e. 

P ( K )  = 1 p(w,)p(w2) dw, dW2 

where 

A = ( ( W ~ ,  4: ( w l - w 2 ( s 2 K } .  

We now extend the analysis to a chain of N oscillators. The main result is an 
exact asymptotic ( N  + 0;)) expression for the probability of phase locking. Assume 
free boundary conditions, i.e. the oscillators at the ends of the chain have only one 
neighbour. Then ( 1 )  becomes 

8, = w ,  + K sin( O2 - e,) 
8, = wi + K sin( &+, - O i )  + K sin( O i - ,  - O i )  l < i < N  (4) 

hN = w N  + K sin(ON-, - ON). 
To calculate the probability of phase-locking, now denoted P( N, K),  assume (4) has 
a phase-locked solution. Then ei( t )  = 8,( t )  for all i, j. Adding all N equations in (4) 
yields 

Substituting this result and adding only the first j equations gives 
i 

j &  = 1 wi  + K sin( - Oj). 
i = l  

Equivalently, 

K sin 4j = Xi j = l ,  ..., N - 1  

where 4j = 6, - e,+, and Xi = X{=, ( w i  - 6). Thus a necessary and sufficient condition 
for a phase-locked solution is that 

max I X , l s K .  
I s j s N  

If (6) is satisfied, there are in general 2N-1 phase-locked solutions of (4) since each 
of the N - 1 equations ( 5 )  are satisfied by two possible 4j. Precisely one of the locked 
solutions is approached asymptotically for almost all initial conditions [ 18,191. Hence 
stable phase-locking occurs whenever (6) is satisfied, and so 

l - s j s n  
(7) 

One expects max IX,I-O(N1’2) since X,  is a sum of - N  random variables. This 
suggests that the coupling needed for phase locking scales as O( Indeed we find 
[ 181 that 

lim P( N, KN1’2)  = - 
N+m 
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The result (8) follows from the observation that the random variable X, is a discretisation 
of pinned Brownian motion [18,23]. In particular, for any fixed coupling K ,  
limN+m P( N, K )  = 0 so phase locking is impossible as N + a3. 

Computer simulation of the chain of oscillators (4) reveals a distinctive kind of 
local cluster formation in the regime of small K where phase locking fails. We define 
the average frequency of the oscillator at site j by 

;,=lim[e,(t)-e,(O)]/t 
tam 

and we define a ‘cluster’ to be a connected group of oscillators with the same average 
frequency. Figure 2 shows the average frequency along the chain for different coupling 
strengths K. Note the formation of longer clusters as K is increased. Figure 2 ( d )  
shows that when K is just below the threshold for phase locking, a single break occurs 
at that oscillator for which IX,l attains its maximum (figure 2 ( e ) ) ,  as predicted by ( 6 ) .  
Note that IX,I is a measure of the accumulated randomness along the chain; the break 
in figure 2 ( d )  does not occur between the two oscillators with the most disparate 
frequencies, as one might have guessed. 

3l- I 
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I 1  1 1  I I I I I I 1  
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Figure 2. Synchronised clusters in a chain of 50 oscillators. The long-term average 
frequencies 6, (see text) along the chain are shown for: ( a )  K = 0 (these are the intrinsic 
frequencies w,, here sampled from a Gaussian distribution with unit variance); ( b )  K = 2; 
( c )  K = 4; ( d )  K = 8. In ( e )  the critical coupling K = max IX,l= 8.46 occurs at oscillator 
j = 31. 
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Figure 3 shows the evolution of cluster formation in a 75 x 75 lattice governed by 
(1). The grey levels represent the average frequencies at the sites, defined as above 
but for t finite. White represents the lowest frequency, black the highest. Starting from 
the initial condition Oj(0) = 0 with random a, (figure 3 ( a ) ) ,  clusters of synchronised 
oscillators start to form by t = lo3 (figure 3 ( b ) )  and become sharply defined by t = lo4 
(figure 3 ( c ) ) ,  which appears to be the asymptotic state for this simulation. Although 
these simulations suggest that the model (1) gives rise to droplet-shaped clusters, this 
is an artefact of a finite lattice. In fact, droplet clusters cannot achieve a size of O( N )  
as N + a ,  as will be shown below. 

Generalising now to the case of d-dimensional lattices, we consider the probability 
that (1) has a solution in which there is a cubical cluster of size O ( N ) .  It will be 
shown that the probability of such ‘macroscopic’ cubical clusters decays exponentially 
fast as N + 00. Hence if solutions to (1) contain any macroscopic clusters, of possibly 
arbitrary shape, then these clusters must be ‘sponge-like’ in the sense that they contain 
no macroscopic cubes. 

The idea of the proof is to coarse-grain the system into block oscillators [17,18]. 
Consider any cube S containing a N  sites. This cube is our putative macroscopic 
cluster. Divide S into non-overlapping adjacent cubes S k  of size md,  where m - O( 1) 
will be chosen later. These 0(1) cubes s k  represent block oscillators. There are 
q = a N / m d  - O ( N )  such blocks, because a, m, and d are fixed independent of N. 
The frequency f l k  and phase @ k  of the block sk are defined as averages over the sites 
in s k :  

f l k = m - d  C w ,  @ k = m - d  C 6,. 
I € &  ,€SI 

Then adding equations (1) for all oscillators i E S k  and dividing by md,  we obtain 

The interaction terms in (9) cancel in pairs, except for the boundary terms with i €  Sk 
and j 5Z S,. There are no more than 2 d K l  md-’  of these terms. Hence for any solution 
of (1) we have 

I b k  -RkI 2dK/ m. (10) 
Now suppose in particular that (1) has a solution such that S is a cluster at the 
frequency A. Then by time averaging (10) we find that the ak must satisfy the 
inequalities 

[ A  - Q k l C 2 d K / m ,  for some A ,  with k =  I,. . . q. (11) 
It can be shown rigorously [18] that for large but fixed m, the probability that (11) is 
satisfied is bounded above by exp( - c N ) ,  where c > 0 is independent of N. This bound 
depends on rare ‘large deviations’ of flk, and may be explained heuristically as follows. 
Inequality (1 1) is satisfied when fl = (a , ,  . . . , Q,) lies inside a narrow tube of radius 
O ( m - ’ )  about the diagonal line ( A ,  A , .  . . , A )  in Rq. The q-dimensional distribution 
of fl is highly concentrated in a ball of radius O ( m - d ’ 2 )  about the origin. For d > 2, 
this ball lies almost entirely inside the tube where (11) holds. Nevertheless, the 
distribution has some probabilistic mass outside the tube, for sufficiently large but 
fixed m, because f l k  can always take on O( 1) values with non-zero probability. (In 
particular, f l k  has the same O(1) support as the original w i . )  Because the f l k  are 
independent, the probability that (1 1) is satisfied is O(exp( -constant x q ) )  - 
O(exp( - c N ) ) ,  for some (very small) c > 0. 
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The preceding argument shows that the probability of clustering in any fixed cube 
S of size 3 a N  is bounded above by exp( - c N ) .  Since there are most -0( N )  possible 
locations for S in the entire lattice, we conclude that for sufficiently large N, 

P (  N ,  K ,  d, a) s O( N exp( - c N ) )  + 0 (12) 

where P (  N, K ,  d, a) denotes the probability that (1) has a solution containing a cubical 
cluster of a N  oscillators. 

The inequality (12) has several interesting consequences. First it confirms the 
conjecture of Sakaguchi et a1 [ 161 that there is no long-range order in one dimension 
for the oscillator lattice (1). (Here long-range order means non-zero probability of 
clusters of size O( N), as N + m.) The point is that in one dimension, all clusters are 
‘cubical’ (i.e. segments) and so (12) applies. A similar result has been obtained 
independently by Daido [17]. Second, for dimensions d > 1, although (12) does not 
rule out O( N)-sized clusters of arbitrary shape, it does show that if such clusters exist 
they contain no large cubes and hence must be riddled with holes. Such sponge-like 
clusters are reminiscent of those observed in Ising [21] and percolation models [22]. 
Finally, (12) shows that the probability of phase-locking decays essentially exponen- 
tially fast as N + 03. This is surprising, considering that in the mean-field theory [ 111, 
if p ( w )  has cutoffs then phase locking occurs with probability one whenever K exceeds 
a critical coupling K , .  One ordinarily expects mean-field behaviour for lattices of 
sufficiently large d (above the ‘upper critical dimension’). Hence d =cc is the upper 
critical dimension for phase locking in the oscillator lattice (1). 

An important open problem is whether O( N)-sized clusters can be proved to exist, 
perhaps for d greater than some lower critical dimension. Numerical evidence [16] 
and heuristic calculations [ 16-18] suggest that d = 2 is the lower critical dimension 
for clustering in the model (1). If correct, this conjecture would establish another 
similarity between the model (1) and the XY model, which exhibits no long-range 
order when d s 2. 

In summary, we have outlined the first rigorous analysis of self-synchronisation in 
a population of N locally interacting oscillators with random intrinsic frequencies. 
By moving beyond earlier mean-field approaches, we have found several results that 
depend on the spatial dimensionality. The one-dimensional lattice studied here requires 
coupling of size O(N”*) to phase lock; for fixed coupling, it cannot support macro- 
scopic clusters of synchronised oscillators. If such clusters exist in higher-dimensional 
lattices, they are sponge-shaped, not droplet-shaped. Lastly, the upper critical 
dimension for phase locking is infinite, indicating that the phase-locking behaviour of 
the mean-field model and lattice models are completely different. 

The research of SHS was supported by a Mathematical Sciences Postdoctoral Research 
Fellowship from the National Science Foundation, Grant DMS 8605761. We thank 
Scott Sutherland and the Graphics Laboratory of the Boston University Mathematics 
Department for help in preparing figure 3, and John Imbrie, Nancy Kopell, and Sid 
Redner for helpful discussions. 
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Figure 3. Evolution of locally synchronised clusters in a two-dimensional lattice of oscil- 
lators (1) with K = 0.25. Grey levels indicate the local frequency, increasing from white 
to black. ( a )  Intrinsic frequencies oj, sampled from a uniform distribution on [0, 11. ( b )  
Coupling-modified frequencies 6, at time t = lo3 and ( c )  at t = lo4 when sharply defined 
clusters have formed. 
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